COMING EVENTS & DEADLINES

Feb 20 – **Deadline** for:
 - Membership in directory
 - Ads for directory
 - Semen order

Feb 22-24 – Farm Show, Simmental Display

Feb 24 - NYJBPA Meeting at Farm Show

Mar 24 - NYSA Meeting – Simme Valley 1pm

May 5 – Gettysburg Stars & Stripes Sale

June 20-23 – ASA Eastern Regional Classic

INDEX

Pg 2 – Meeting Minutes
Pg 3 – Treasurer’s Report
Pg 4-5 – Successful Calving Season
Pg 6, 7, 8 – Your Cattle’s Manure
Pg 10 – Daytime Calving
Pg 11 – Gestation Length
Pg 13 – Forage Quality
Pg 14 – Heifer Development
Pg 15, 16, 17 – Across Breeds EPD Table
Pg 19 – ASA Press Release
Pg 22 – Directions to Next Meeting
Pg 23 – Membership Application

Next Simmental Meeting

March 24th – 1pm – Groton Community Church,
near Simme Valley Farm, Groton, NY
Pick up your semen. See directions on pg. 22

In search of a location for our picnic meeting in July. If interested, please contact an officer or let us know at the March meeting.
1. Pres. Shane Meyers called the meeting to order at 1pm after a great buffet dinner. We had introductions of 29 attendees during Jean O'Toole's discussion. Mrs O'Toole is the Executive Director of NY Beef Council.

2. Phil Paradis made a motion to accept the minutes as printed in the newsletter, Robert Groom 2nd.

4. Committee Reports:
 A. NYSF – It is the White Park’s turn to pick the judge. Jeanne will check with them. There will not be a “Other Breeds” show on our shift, so our show time can be later. Julie Murphy moved to have our show start at 10AM & Pillar Allis 2nd, passed.
 B. Promotion – Ed Koss reported that he will bring the booth to EFD. Shawn M displayed at NYBPA Ann Mtg and will display at the Big East.
 C. Directory & Newsletter – Win a free page or $85 towards a prime page – sell the most ads. Sheila Bunal helps with the newsletter.
 D. Nominating Chairman, Art Reynolds announced the Slate of Officers: Pres: Shane Meyers; V.Pres: Darryl Bunal; Sect: J White; Treas.: Shawn Murphy. Slate of Directors: Russ Bunal, Ed Koss, Shawn Murphy.
 F. Junior Advisors: Jonah & Abbey Broughton will hold a junior meeting at the Farm Show in Syracuse. Chris Britt sent a report showing $5,863.03 in the junior account.

5. Correspondence:
 A. NYSA received some Thank You notes from juniors for the support of the Fall Festival.
 B. ASA – Cliff Orley was elected Trustee. He thanked us for his support.

6. Old Business:
 A. Semen orders due 2-20-18 – order your books now.
 B. NYSA Logo – Shawn Murphy has a new one by Taylor Hoelscher & Taylor is working on our web site.
 C. NYSA advertised in the NYJBPA & ASA’s calendar

7. New Business:
 A. Election of Officers & Directors – there were no added nominations, so the Secretary was asked to cast one vote for the Slate of Officers & Directors presented by Art Reynolds. Passed
 B. Prime Page Auction:
 Back Cover $350 Simme Valley
 Ins Front Cover $300 Elm Side Farm Center Left $150 Elm Side Farm
 Ins Back Cover $225 Trowbridge Angus Center Right $150 Stars & Stripes Sale
 Page 1 $250 Ledge Knoll Last Page $150 Premier Farm
 Page 47 $150 Patnoel Farm
 Back of Center Left $150 Back of Center Rt $150 Tullyferagus
 C. Farm Show – Elm Side will provide a heifer & Simme Valley will help.
 D. EFD – Simme Valley is willing to provide cattle for the display.
 E. Shawn M made a motion to donate $150 to FF, $150 to Spring Preview & $500 to Eastern Regional; Art Reynolds 2nd, passed.
 F. Picnic Meeting – discussed – noone volunteered yet.
 G. Next Meeting – 3-24 at Simme Valley
 H. Other – next year NYSA wants to sponsor the Supreme Chairs – already taken this year.
 I. Russ Bunal made a motion to adjourn at 2:10, Phil Paradis 2nd, passed.

Respectfully submitted,
Jeanne White, Secretary
Banking Summary of the NY Simmental Assoc. - as of 12/31/1

1/1/2017 through 12/31/2017

<table>
<thead>
<tr>
<th>Category Description</th>
<th>Actual</th>
<th>Budget</th>
<th>Difference</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCOME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertisements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directory Ad</td>
<td>$2,895.00</td>
<td>$4,200.00</td>
<td>(1,305.00)</td>
<td>$3,500.00</td>
</tr>
<tr>
<td>Newsletter Ad</td>
<td>$780.00</td>
<td>$850.00</td>
<td>(70.00)</td>
<td>$850.00</td>
</tr>
<tr>
<td>ASA Cost Share</td>
<td>$4,000.00</td>
<td>$4,000.00</td>
<td>(400.00)</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>Beef Checkoff</td>
<td>$253.70</td>
<td>$250.00</td>
<td>3.70</td>
<td>$300.00</td>
</tr>
<tr>
<td>Membership Dues</td>
<td>$1,455.00</td>
<td>$1,775.00</td>
<td>(320.00)</td>
<td>$1,650.00</td>
</tr>
<tr>
<td>Promo & Sale Materials</td>
<td>$ -</td>
<td>$100.00</td>
<td>(100.00)</td>
<td></td>
</tr>
<tr>
<td>TOTAL INCOME</td>
<td>$9,383.70</td>
<td>$11,175.00</td>
<td>(1,791.30)</td>
<td>$10,300.00</td>
</tr>
<tr>
<td>EXPENSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertising</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYBPA</td>
<td>$2,193.95</td>
<td>$1,600.00</td>
<td>(593.95)</td>
<td>$1,300.00</td>
</tr>
<tr>
<td>Other</td>
<td>$600.00</td>
<td>$175.00</td>
<td>(425.00)</td>
<td>$220.00</td>
</tr>
<tr>
<td>Directory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing</td>
<td>$2,750.00</td>
<td>$2,600.00</td>
<td>(150.00)</td>
<td>$2,600.00</td>
</tr>
<tr>
<td>Postage</td>
<td>$60.65</td>
<td>$100.00</td>
<td>39.35</td>
<td>$65.00</td>
</tr>
<tr>
<td>Empire Farm Days</td>
<td>$500.00</td>
<td>$500.00</td>
<td>(0.00)</td>
<td>$500.00</td>
</tr>
<tr>
<td>Honorariums</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directory Editor</td>
<td>$250.00</td>
<td>$250.00</td>
<td>(0.00)</td>
<td>$250.00</td>
</tr>
<tr>
<td>Newsletter Editor</td>
<td>$250.00</td>
<td>$250.00</td>
<td>(0.00)</td>
<td>$250.00</td>
</tr>
<tr>
<td>Secretary</td>
<td>$250.00</td>
<td>$250.00</td>
<td>(0.00)</td>
<td>$250.00</td>
</tr>
<tr>
<td>Treasurer</td>
<td>$250.00</td>
<td>$250.00</td>
<td>(0.00)</td>
<td>$250.00</td>
</tr>
<tr>
<td>Insurance</td>
<td>$239.00</td>
<td>$250.00</td>
<td>11.00</td>
<td>$240.00</td>
</tr>
<tr>
<td>Misc.</td>
<td>$125.00</td>
<td>$200.00</td>
<td>75.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>New York State Fair</td>
<td>$430.00</td>
<td>$600.00</td>
<td>170.00</td>
<td>$450.00</td>
</tr>
<tr>
<td>Newsletter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postage</td>
<td>$317.18</td>
<td>$300.00</td>
<td>(17.18)</td>
<td>$325.00</td>
</tr>
<tr>
<td>Printing</td>
<td>$1,314.75</td>
<td>$1,400.00</td>
<td>85.25</td>
<td>$1,300.00</td>
</tr>
<tr>
<td>Office Expenses</td>
<td>$25.41</td>
<td>$200.00</td>
<td>174.59</td>
<td>$200.00</td>
</tr>
<tr>
<td>NYSA Annual Meeting</td>
<td>$522.00</td>
<td>$500.00</td>
<td>(22.00)</td>
<td>$600.00</td>
</tr>
<tr>
<td>Promo & Sale Material</td>
<td>$ -</td>
<td>$300.00</td>
<td>(300.00)</td>
<td>$100.00</td>
</tr>
<tr>
<td>Sponsorships</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYJBPA Events</td>
<td>$300.00</td>
<td>$300.00</td>
<td>(0.00)</td>
<td>$300.00</td>
</tr>
<tr>
<td>Other Sponsorships</td>
<td>$200.00</td>
<td>$500.00</td>
<td>300.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>Website</td>
<td>$100.00</td>
<td>$650.00</td>
<td>550.00</td>
<td>$500.00</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>$10,677.94</td>
<td>$11,175.00</td>
<td>497.06</td>
<td>$10,300.00</td>
</tr>
</tbody>
</table>

Bank Account Balance -- $5,371.52
A successful calving season is the result of good planning and hard work. A defined calving season, or one restricted to a certain period of time, begins with a defined breeding season and allows you to concentrate your efforts on successful calving management.

Before the calving season begins, be sure to identify the areas where you plan to calve, make a list of the cows and heifers expected to calve, and procure all the supplies required for calving. Check fences and corrals to ensure that they are suitable for cows, heifers, and calves, and develop an emergency plan for family members and employees to follow. Supplies you will need to have to prepare for calf delivery are as follows:

- Obstetrical (OB) chains for pulling on the calf’s legs. See Figure 1. OB chains are preferred because they can be easily disinfected after each use.
- OB handles for pulling on the OB chains.
- Mechanical calf puller (calf-jack) that can exert substantial force on the cow or heifer and the calf. Use caution. If used improperly the cow, heifer, and/or calf can be injured or killed.
- OB lubricants.
- Plastic gloves.
- Water buckets for cleaning and disinfection.
- Towels and paper towels.
- Iodine for disinfecting the calf’s navel.

Observation of cows and heifers before, during, and after the calving season is necessary to ensure the health and safety of cows, heifers, and calves. Cows should be checked at least once daily during the calving season, and heifers should be checked two to three times daily. Having the cows and heifers in an easily accessible pasture with access to working facilities will make this task more manageable. Also, allowing animals to calve in cleaner pastures away from accumulated mud and manure is better for the health of the calf and the cow or heifer.

One of the complications encountered during calving is dystocia, which is a difficult delivery. Because assistance is often required with a dystocia, you need to be familiar with the signs of impending parturition (calving) as well as the sequence of events associated with normal labor and delivery to determine when or if assistance is needed.

Signs of impending calving are as follows:
- The udder and vulva may enlarge 1 to 3 weeks prior to calving.
- Cows and heifers may become more nervous (restless) and, if possible, may isolate themselves from the rest of the herd just prior to calving. They may also glance to the rear nervously.
- A cow or heifer may show signs of abdominal discomfort by kicking at her belly.
- The tail or head of the calf appears as ligaments around the rump of the cow or heifer relax.

Calving Stages

Normal calving is divided into three stages: preparatory, delivery, and expulsion. As the preparatory stage begins, the cow or heifer may become nervous and isolate herself from the rest of the herd. Uterine contractions begin, the colostrum/milk drops into the teats, and the fluid-filled placental sac containing the calf appears in the cervix. When this water sac breaks, the next stage begins. The preparatory stage typically lasts 4 to 8 hours for cows and 6 to 12 hours for heifers.
During the delivery stage, the cow or heifer begins actively straining. In normal parturition, the calf’s forelegs and head protrude first about 70 percent of the time, and the hind legs and tail come first about 30 percent of the time. This stage typically lasts less than an hour for cows and 1 to 2 hours for heifers. It is over when the calf is fully delivered.

In the final or expulsion stage, the straining decreases, but the uterine contractions continue in order for the placenta to be expelled. This stage may last up to 12 hours but should occur within the first few hours after delivery of the calf. If the placenta is not expelled soon after birth, do not manually remove the placenta by pulling it out. Contact your veterinarian. For more information about retained placenta and other complications that may occur during calving, refer to Extension publication ANR-1404, “Complications Associated with Calving.”

If parturition does not proceed as described, you may need to assist the cow or heifer with the birth or even seek assistance from a veterinarian or experienced cattle producer. Early intervention is the key to a successful outcome. Waiting too long unnecessarily risks the life of the cow or heifer and her calf.

The following are some things to keep in mind when trying to determine when to provide assistance or when to call your veterinarian.

• Calving takes time, and it often takes longer for heifers than for cows, so be patient. Progress should be steady and generally fit within the time frames mentioned. Once the delivery stage begins, the cow or heifer should make visible progress about every 15 to 20 minutes.
• Use the 2+1 rule to help determine when to call for help. Upon examination, 2 feet and 1 head (or 2 feet and 1 tail) should be felt or seen for a normal delivery to proceed. If adequate time has elapsed and 2+1 is still not seen or felt, call for assistance.
• If the cow or heifer becomes exhausted and quits trying to calve, assistance is necessary.
• When in doubt, call your veterinarian. The outcome is always more favorable if assistance is provided sooner rather than later.
• No more than two strong people should pull on a calf at the same time.

If possible—and if safe for you and the animal—corral the cow or heifer needing assistance before your veterinarian arrives. This will make the veterinarian’s job easier and minimize your expenses. Other things to keep in mind when providing assistance are as follows:

• Never attach an OB chain or a rope to the calf’s jaw, because the jaw will almost always fracture.
• Be careful not to apply excessive force when using a calf-jack.
• Never attempt to deliver a calf by pulling it with any type of vehicle.

ANR-1403
Soren P. Rodning, Extension Veterinarian, Assistant Professor, Animal Sciences; W.F. Owlsley,
Extension Animal Specialist, Associate Professor, Animal Sciences; Michelle F. Elmore,
Extension Animal Scientist/Beef Cattle Improvement; Misty A. Edmondson, Veterinarian,
Assistant Professor, Clinical Sciences; Julie A. Gard, Veterinarian, Associate Professor,
Clinical Sciences; and Andrew S. Lovelady, Veterinarian, Clinical Sciences, all with Auburn University
For more information, call your county Extension office. Look in your telephone directory under your county’s name to find the number.
Published by the Alabama Cooperative Extension System (Alabama A&M University and Auburn University), an equal opportunity educator and employer.
Web Only, New Oct 2011, ANR-1403
© 2011 by the Alabama Cooperative Extension System. All rights reserved.
www.aces.edu

5
What is your cattle's manure telling you?
Marci Whitehurst for Progressive Cattleman Published on 13 May 2016

Spring is here and the manure piles are getting looser. Tender green grass is highly soluble and often passes through the rumen before getting fully dehydrated, causing runnier manure. This is anticipated in spring, but what else can cattle’s manure tell us about their health?

"It's a lost art form that's been used for generations," says Ted Perry, animal nutritionist for Purina. "Assessing nutrition can be as simple as looking down at the manure." Perry explains manure can tell us everything from when to add protein to the diet to catching problems like acidosis before it's a problem.

While manure can’t tell you everything about bovine health, it is a helpful tool. Dr. John Hall of the University of Idaho states, "Fecal matter is one of many indicators of cattle health and nutrition."

The color of the manure is usually indicative of feed color. Winter months mean brown forage, thus brown manure. Higher quality forages mean brighter colored stools. However, if you have a calf receiving creep feed and the stool looks light and pasty, it is time to add some intake modifiers. Scours, caused by an E. coli overgrowth in the rumen, will show as gray or misty colored, extremely loose manure. Most ranchers are familiar with scours and know treatment is imperative. Bloody stool could indicate coccidiosis, and intestinal discharge of tissue is often associated with salmonella.

Sickness aside, how loose is too loose? According to Perry, manure that won't pile indicates a problem. "If a cow pie won't stack up an inch or so, the diet needs to be adjusted."

Runny stools mean cattle are not metabolizing all potential nutrients. High protein diets with less fiber equate to runny stools. Adding fiber is beneficial at this point (free-choice grass hay or straw is an easy remedy) to ensure that cattle utilize all the protein they ingest and aren't just losing it out the other end. Consistency can be a helpful indicator of health or an obvious sign of feed type.

Feedlot manure differs from pasture manure. Feedlot manure often looks pastier than pasture manure due to feed and environment. "Feedlot manure is looser than an animal on dry hay, but shouldn't be watery or runny," Hall says. Watery or runny can be an indication of acidosis or Johne's disease. While more common in dairy cattle, Johne's is becoming more prevalent in beef cattle. Since no treatment exists for Johne's, prevention is crucial. Cattle with Johne's disease have difficulty maintaining weight in addition to runny stools.

On the flip side, if manure looks thick and fibrous, it is high time protein be added to the diet. Perhaps your grandpa used to walk the pastures and kick manure with his boot. If it's dry and grainy, protein is a must. Wouldn't it be nice to know at the initial onset though, before it got so dry it didn't even stick to your boot? How do we know when we've crossed the line into needing more protein?

Perry says once a cow pie begins folding on itself, there's a need for additional protein. "Manure that folds together and looks
more like bread dough indicates low protein." There are several protein supplements on the market that make a great addition to low protein pastures typical in late summer, fall and winter. Protein supplements feed the rumen microbes so they can more fully digest forages.

How else do you know you're getting the most out of your feed? Seed hulls in manure can be dissected to evaluate digestion. Pick out hulls and see if they're empty. If so, the cattle are metabolizing nutrients. However, Hall says picking through manure isn't always warranted. "If you are feeding grain, you're going to see seed in manure, especially if it isn't ground. What you want to notice is the overall percentage. If a cow eats 1 pound of grain, there's usually only a small percentage left in the manure."

So the next time you're wondering what feed to put in front of your cattle, maybe take a look behind them first. After all, the proof is often in the pile. end mark

Marci Whitehurst is a freelance writer based in Montana.

PHOTO 1: Healthy manure pile.

PHOTO 2: Runny manure from green grass.

PHOTO 3: Runny, pasty manure indicating scours.

PHOTO 4: Intestinal discharge.

Calving refresher + a checklist to help you prep (sooner than later)
By Sandy Johnson Jan 04, 2018

It's never too early to get ready for calving season. After all, chance favors the prepared rancher.

The spring calving season is fast approaching, and for some cow-calf producers, it may begin soon. Whether you start calving in January-February, or calve later in the year, now's the time to start planning ahead. Here's a checklist to help you plan and prepare to improve the success of your calving season and weaned calf crop.

1. Balance cow rations for adequate protein and energy for increased third trimester and subsequent lactation requirements. Group and feed cows by body condition and age to the degree possible. Target body condition for first calf heifers at calving of 5.5 to 6 and 5 to 5.5 for mature cows.
2. Develop a sound vaccination program to prepare the cow to produce high-quality colostrum.
3. Control lice and internal parasites.
4. Plan for recording calving data and consider ways to back up records.
5. Make sure calving facilities are clean and in good repair.
6. Plan for ear tags, tattoos, scale or weight tape, banding or castration.
7. Check flashlights and other quality portable light sources.
8. Review basic treatment plans with local veterinarian for retained placenta, calf scours, colostrum supplements and ensure necessary treatments and supplies are on hand or readily available. Include a functional thermometer.
9. Have on hand at least two clean and functional esophageal tube feeders, clearly marked, one for healthy calves, one only used for sick calves.
10. Plan and watch for opportunities to collect colostrum from within the herd. Date and freeze in quart sized plastic bags for future use.
11. If replacement calves are obtained from outside the herd, plan for their isolation and testing before exposing to entire herd.
12. Plan for severe weather; wind, freezing rain and blizzards are not uncommon. Plan for correcting calf hypothermia. Calf shelters should be in good repair, bedding on hand. Plans for portable windbreaks and calf shelters are available from your local Extension office.
13. Shift feeding to dusk or later to promote daytime calving one week before anticipated start of calving season.

Develop standard operation procedures for calving and providing assistance. Include list and contact information for individuals who can provide more expertise or assistance as required.

Once you’ve done these things, consider this checklist for calving assistance:

* OB chains, calf puller, OB gloves, OB lube (non-detergent soap & water is one option), non-irritant antiseptic (Betadine or Nolvasan), flank rope to lay cow down.
 * A cooler can be used to keep warm water in calving barn if no other source available.
 * Old towels or something similar.

The following are suggestions on when to intervene should a heifer or cow need assistance:

You suspect cow has been in Stage 1 over 8 hours.

Stage 1 characteristics:

* restlessness
* pain
* lies down and gets up frequently,
* seeks isolation (signs more apparent in first-calf heifers than mature cows).

Stage 2 –

* Water sack visible for 2 hours and cow is not trying
* Cow trying for over 30 minutes and no progress is being made
* Cow has quit trying for over 15-20 minutes after a period of progress
* Cow or calf showing excessive fatigue or stress (swollen tongue or excessive bleeding)
* You can observe the calf presentation is other than two front feet and head first.

When Calves Arrive

Calves should have colostrum within first 2 hours of life, if calf can’t get colostrum from dam, take steps to give colostrum within 4-6 hours of birth. Colostrum intake should be 10% of calf’s body weight, 0.5 to 1 gallon. If supplementing colostrum, don’t overfeed to encourage calf to nurse on its own. A 1.5 quart dose is a good starting point. Handle healthy calves before sick calves and avoid exposing newborns to contaminants on clothing or materials used on sick calves.

If a cow is brought in for any amount of calving assistance, make sure she leaves with a clean udder. Work toward developing a notebook that has all the standard operating procedures for your operation. Include things like yearly vaccination plans, treatment protocols, calving and calving assistance protocols, euthanasia protocols, drought management plans and weather emergency plans.

This will be a valuable resource when communicating with employees new and old, when reviewing what needs to be improved for the next year or if a health emergency forces someone else to take care of the herd.

Johnson is an Extension beef specialist with Kansas State University based in Colby, Kan.
Tullyfergus Angus Herd
Robert & Linda Groom
8974 Lyons Marengo Rd
Lyons, NY 14489
315-946-8204
315-573-2569 cell
Rnlgroom@hotmail.com
www.Tullyfergus.com
It is time to begin the early evening feeding
By : Glenn Selk, Oklahoma State University Emeritus Extension Animal Scientist

It is generally accepted that adequate supervision at calving has a significant impact on reducing calf mortality. Adequate supervision has been of increasing importance with the higher price of live calves at sale time. On most ranching operations, supervision of the first calf heifers will be best accomplished in daylight hours and the poorest observation takes place in the middle of the night.

The easiest and most practical method of inhibiting nighttime calving at present is by feeding cows at night; the physiological mechanism is unknown, but some hormonal effect may be involved. Rumen motility studies indicate the frequency of rumen contractions falls a few hours before parturition. Intraruminal pressure begins to fall in the last 2 weeks of gestation, with a more rapid decline during calving. It has been suggested that night feeding causes intraruminal pressures to rise at night and decline in the daytime.

The concept is called the Konefal method. A Canadian rancher, Gus Konefal reported his observations in the 1970’s. In a follow-up Canadian study of 104 Hereford cows, 38.4% of a group fed at 8:00 am and again at 3:00 pm delivered calves during the day, whereas 79.6% of a group fed at 11:00 am and 9:00 pm. In a more convincing study, 1331 cows on 15 farms in Iowa were fed once daily at dusk, 85% of the calves were born between 6:00 am and 6:00 pm.

Kansas State University scientists recorded data on 5 consecutive years in a herd of spring calving crossbred cows at the Kansas State University Agricultural Research Center at Hays, Kansas. They recorded the time of calving (to within the nearest one-half hour). Births that could not be estimated within an hour of occurrence were excluded. Cows were fed forage sorghum hay daily between 4:00 and 6:00 pm. For statistical purposes, the day was divided into four-hour periods.

Between 6:00 and 10:00 am, 34.23% of the calves were born; Between 10:00 am and 2:00 pm, 21.23% of the calves were born; Between 2:00 and 6:00 pm 29.83% of the calves were born; Between 6:00 and 10:00 pm, 8.41% of the calves were born; Between 10:00 pm and 2:00 am, 4.4% of the calves were born; and Between 2:00 am and 6 am, 1.91% of the calves were born.

It is interesting to note that 85.28% of the calves were born between 6:00 am. and 6:00 pm. This is very similar to Iowa data when cows were fed at dusk.

These data also revealed that for a majority of a animals in the herd, the time of calving was within 3 hours of the average time of day that cow had previously given birth. Feeding the forage in the early evening hours undoubtedly influenced the percentage of cows calving in daylight hours. (Jaeger and co-workers. Abstracts 2002 Western Section of American Society of Animal Science.)

Many cow/calf producers put large round bales in ring feeders and leave them out for round-the-clock feeding for the cows. Records here at Oklahoma State University indicated that when cows had constant access to large round bales but were fed supplements at about 5:00 pm, 70% of the calves were delivered between 6:00 am and 6:00 pm. Some producers choose to put the big round bales and the ring feeders inside a fenced enclosure. The gates to the hay feeding enclosure are opened at dusk and the cows are allowed access to the hay in the evening and overnight hours, then they are moved to another adjacent pasture the following morning. Anecdotal reports have indicated that this method has the desired results with a higher percentage of calves born in the daylight.
Gestation Length: Calves Arrive Sooner Than They Used To

By : Justin Rhinehart, University of Tennessee Extension

What is the gestation length of a cow? This question usually gets the answer of “it averages 283 days.” A better answer is “it can range from about 265 to as much as 295 days.” For breeds that have focused on low birthweight genetics for several generations, the average gestation length has shortened. But, there are several other factors that can shorten or lengthen gestation notwithstanding genetics.

Before considering those factors, it is important to learn what actually triggers the calving process. Since the calf has to be fully developed and ready to thrive as soon as it is borne, a mechanism is built in to make sure the cow does not give birth too soon. One of the last systems to fully develop in a calf is the system that produces stress hormones (cortisol is one of those). It is believed that the fetus starts to run out of room in the cow’s uterus toward the end of the pregnancy. So, once the stress response system is fully developed, it releases those stress hormones that lead to many other changes that culminate in birth of the calf.

There are several factors known to affect the length of gestation in cattle. One of those is sex of the calf. On average, bull calves arrive later than heifer calves for cows bred on the same day. Calving season can also affect the length of pregnancies. Calves born in a conventional fall calving season (late August – October) generally arrive sooner than the same genetics would in a conventional spring (January – March) calving season. Some breeds and breed types are also known to have shorter or longer pregnancies than the overall average of 283 days.

With those (and several other) factors being the same, genetics of the sire and dam also influence the length of gestation. Cattlemen have selected for low birthweight genetics for many generations now. With that, has come an associated selection for shorter gestation. If a bull sires pregnancies that are calved just a few days shorter, it can dramatically reduce the birthweight and improve calving ease. Fetal calves are gaining between 1 to 1.5 pounds per day at the end of a pregnancy. So, shortening that process to 276 days can result in as much as 10 pounds less birthweight compared to 283 days.

Bulls were actually selected for siring shorter pregnancies before calving ease was the focus. In an interesting article written by Heather Smith Thomas and published in the January 2014 edition of “Hereford World”, Buddy Westphal describes his search for bulls that sire shorter pregnancies. In that case, he was interested in shorter gestation so his cows would have longer to breed back and have a calf the same time the next year. He noted that when he was able to find bulls – from a Canadian research trial – that shortened gestation length, it also took care of most of his calving difficulties.

What is the moral of this story? Don’t let the start of calving season catch you off guard. For herds that have selected for low birthweight for several breeding seasons and retained replacement heifers with those genetics, it is not uncommon for calves to drop as early as two weeks before the calculated due dates. Using “curvebender” bulls (low birthweight but aggressive growth to weaning and yearling) through artificial insemination can result in calves being born three weeks earlier than the calculated due date from AI. In fact, many cattlemen report having all their calves from timed AI on the ground before the 283 day mark.

These early calves are usually fully developed and thrive even at an extremely low birthweight. But, make sure to account for this on the calendar so someone will be ready to tag, weigh and process calves that get here sooner than expected; especially during cold and damp weather. More than that, think about whether low birthweight genetics are a primary selection criteria for your goals. Certainly, having a live calf unassisted is extremely important. But, balancing that with other criteria like growth, reproductive performance and value to the feeder and packer is also important for optimizing economic efficiency.

Posted in Cow/Calf Corner and tagged birthweight, breeds, calving ease, cattle, curvebender, genetics, gestation, growth hfrs.
Show Calves and Breeding Stock for Sale
Cattle for the small Breeder, calm dispositions.
Visitors are always welcome – Call for directions

Elm Side Farm
Registered Simmental Cattle
Also Registered SimAngus Genetics

THE REYNOLDS FAMILY
Art Reynolds,
Barb, Roger and Darby
836 Little Dryden Rd
Walton, N.Y. 13856
Barn: 607-865-6888
Cell: 607-434-3058
elmsidefarm@frontiernet.net

Show Calves and Breeding Stock for Sale
Cattle for the small Breeder, calm dispositions.
Visitors are always welcome – Call for directions

STOFFELS
GLENVIEW FARM

James D. Frueh

Registered Angus Bulls,
Steers & Heifers
Out of quality embryos
Round Bale Baleage
& Dry Round Bales

518-436-1050
New York

ATTENTION JUNIORS!

Simmental WINNERS
$100 – Supreme All Breed
$50 – Grand Champion

Rules: Any junior exhibitor showing Simmental within the state of New York at a County Fair or other organized youth show.
Animal must be a registered PUREBRED in the junior’s name or family farm name.
Supreme Champion must be over All Other Breeds (must have competition).
Grand Champion must have AT LEAST 10 head of Simmental females with AT LEAST 3 exhibitors, OR at least 10 steers of any breed with a registered Simmental steer winning Grand Champion.

PICTURE & PROOF from management of show must be sent to:
NYSA, 7625 Ridge Rd, Gasport, NY 14067
Interpreting Forage Quality of Grass Hay
By Bruce Anderson, Nebraska Extension Forage Specialist

Have you ever tested the quality of your grass hay and been disappointed at the low relative feed value? Well, maybe your worry is unnecessary. Farmers and ranchers often tell me their prairie hay or cane hay or other grass hay looks really good but when a lab tested it the relative feed value, also called RFV, was surprisingly low, maybe in the 70s or 80s. So what's wrong with the hay?

Well actually, nothing may be wrong. You see, relative feed value was initially developed primarily to test legumes like alfalfa for the dairy industry. It used two types of fiber, the acid detergent fiber (ADF) and the neutral detergent fiber (NDF) to calculate RFV. The NDF helped estimate intake and ADF estimated energy.

However, this system assumed all fiber had the same digestibility. We know that is not true, and it especially misrepresents the forage quality of grasses. Grasses have more fiber than legumes but grass fiber usually is more digestible than legume fiber. So grass hay frequently is ranked lower than it should be using relative feed value.

Fortunately, new, low-cost tests have been developed that do a very good job of measuring digestible fiber, thus doing a better job of estimating forage quality of grasses. This test is called relative forage quality, or RFQ for short.

Forage scientists and animal nutritionists have worked together with these tests to also revise the intake and energy estimates so results from these tests predict how animals will truly perform much more accurately.

While this new RFQ test is especially useful when testing grassy hays, it also has been proven to be better with alfalfa and other legumes. So when you test forages in the future, look for labs that offer relative forage quality. Your numbers will be more accurate.

Remove Net Wrap and Twine
By Bruce Anderson, Nebraska Extension Forage Specialist
Neither plastic net wrap nor biodegradable twine get digested by rumen microbes.

Is twine or net wrap good feed? Obviously not, but it can cause health problems if animals eat too much of it.

Feeding hay is work. To lighten the work load feeding hay, we often take short cuts and leave some twine or net wrap on the bales. Whether we want them to or not, animals eat some of that twine. A few years ago I shared with you information I had received from Dr. Dee Griffin, veterinarian at the Great Plains Veterinary Education Center in Clay Center, about the potential for twine to accumulate in the rumen of cattle and cause obstruction. Recent research at North Dakota State University has confirmed this risk and provided further information on what happens to twine when cattle eat it.

In a series of experiments, the North Dakota research first showed that neither plastic net wrap nor biodegradable twine get digested by rumen microbes. Sisal twine, however, does get digested, although quite a bit more slowly than hay.

In another study net wrap was included in the ration fed to steers for an extended period of time. Then, 14 days before the steers were harvested the net wrap was removed from the feed to learn if the net wrap eaten earlier might get cleared out of the rumen and digestive system. Turns out it was still in the rumen even after 14 days.

So what should you do? First, remember that it doesn’t appear to be a health concern very often. Cows are obviously more at risk than feedlot animals. So, it might be wise to remove as much twine, especially plastic twine, as can be removed easily from bales before feeding. Twine in ground hay may be less of a problem since more of it is likely to pass completely through the animal.

Think about how shortcuts and work-reducing actions you take this winter might affect your animals. Then act accordingly.
January is an important “check-point” in spring heifer development programs. The key to proper heifer development lies in understanding the factors that influence conception in yearling heifers. One key factor regulating heifer fertility is age at puberty. Most producers don’t consider age at puberty of their heifers to be a major problem, yet few know how many heifers are actually cyclic at the beginning of the breeding season. A Nebraska study demonstrated that the proportion of heifers that were pubertal on the first day of the breeding season varied greatly over 5 consecutive years in a single herd. The percentage of heifers that were pubertal on the first day of the breeding season ranged from only 21% to as high as 64% over the 5-year period. For maximum fertility and reproductive performance, heifers must have had at least one estrus before the beginning of the breeding season. Our goal then is to incorporate reproductive management techniques to reduce the age of puberty, increase fertility, and shorten the interval to conception.

One of the largest factors that regulate puberty in the heifer is weight. For puberty to occur, heifers must weigh at least 65% of their mature weight. This weight is referred to as their target weight. Most heifer development programs require that heifers reach their target weight, approximately 65% of their expected mature weight, by the onset of their first breeding season. Because fertility increases until the third estrus after puberty, heifers should reach their target weight at least 30 days before the start of the breeding season. I refer to this date as the target date.

January is the time to determine if your heifers are “on track”. Most yearling heifers will need to reach 700-800 pounds (their projected target weight) by mid-April to ensure high fertility assuming that the heifer breeding season starts about mid-May. Weigh your heifers to determine how much they have left to gain to reach their target weight. If the heifers weighed on average 600 pounds and their target weight is 750 pounds then they will need to gain 150 pounds or 1.5 – 1.6 pounds each day to reach their target weight by mid-April. Heifers should reach a BCS of 5.0-5.5 by their target date.

The next important phase in heifer development occurs one month prior to the start of the breeding season. At this time, heifers should be vaccinated (Vibrio fetus, Leptospriosis, and the respiratory disease complex which includes PI3, BRSV, BVD and IBR; modified-live vaccine is preferred), dewormed, and pelvic area measurements should be obtained. Heifers with small pelvic areas and especially large heifers with small pelvic areas tend to have greater difficulty calving. Now is the time to contact your local veterinarian to schedule this pre-breeding work.

Producers should consider estrus synchronization and/or AI. Estrous synchronization and AI has many advantages which include: higher pregnancy rates, heavier, more uniform calves at weaning, and increase production and labor efficiency. The greatest advantage of AI is the ability to use superior, more predictable sires. Since a majority of calving problems in a herd occur when calving first-calf heifers, it seems only logical to synchronize and AI your heifers to proven calving ease bulls. Contact your local AI technician to schedule a time to breed your heifers. Next month, I will discuss various methods for estrous synchronization.

Proper heifer development is one of the key components to profitability in a beef cattle operation. Understanding the principles of heifer development can enable producers to incorporate management techniques to improve the efficiency of the operation.
The across-breed EPD tables produced by USMARC help commercial cattle producers navigate the EPDs of different breeds to select bulls that will work best in a crossbreeding system.

Normally, the EPDs of animals from different breeds cannot be compared because most breed associations compute their EPDs in separate analyses and each breed has a different base point. Thus, EPDs are generally only comparable within breed because of differences in the genetic base.

To bridge this gap, the U.S. Meat Animal Research Center (USMARC) has produced a table of factors since 1993 to adjust the EPDs of cattle so that the merit of individuals can be compared across breeds. Adjustment factors for carcass traits have been calculated since 2009 and carcass weight was added in 2015; to be included, breeds must have carcass data in the USMARC database and report their carcass EPDs on an actual carcass basis using an age-adjusted endpoint.

Bulls of different breeds can be compared on the same EPD scale by adding the appropriate adjustment factor to the EPDs produced in the most recent genetic evaluations for each of the 18 breeds. The across-breed adjustment factors (AB-EPDs) allow producers to compare the EPDs for animals from different breeds for these traits; these factors reflect both the current breed difference (for animals born in 2014) and differences in the breed base point.

The AB-EPDs are most useful to commercial producers purchasing bulls of more than one breed to use in crossbreeding programs. For example, in terminal crossbreeding systems, AB-EPDs can be used to identify bulls in different breeds with high growth potential or favorable carcass characteristics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hereford</td>
<td>1.6</td>
<td>-18.2</td>
<td>-42.1</td>
<td>-14.1</td>
<td>-0.29</td>
<td>-0.06</td>
<td>-0.075</td>
<td>-72.4</td>
</tr>
<tr>
<td>Red Angus</td>
<td>2.3</td>
<td>-28.3</td>
<td>-35.4</td>
<td>5.5</td>
<td>-0.13</td>
<td>0.06</td>
<td>-0.017</td>
<td>-16.6</td>
</tr>
<tr>
<td>Shorthorn</td>
<td>4.2</td>
<td>-39.8</td>
<td>-32.8</td>
<td>3.6</td>
<td>-0.13</td>
<td>0.60</td>
<td>-0.103</td>
<td>-18.3</td>
</tr>
<tr>
<td>South Devon</td>
<td>2.3</td>
<td>-32.5</td>
<td>-55.2</td>
<td>14.1</td>
<td>-0.47</td>
<td>0.66</td>
<td>-0.220</td>
<td>-67.2</td>
</tr>
<tr>
<td>Beefmaster</td>
<td>4.5</td>
<td>21.9</td>
<td>-0.3</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brahman</td>
<td>10.6</td>
<td>49.5</td>
<td>15.8</td>
<td>19.4</td>
<td>-0.64</td>
<td>0.10</td>
<td>-0.169</td>
<td>33.9</td>
</tr>
<tr>
<td>Brangus</td>
<td>3.3</td>
<td>13.9</td>
<td>4.5</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Gertrudis</td>
<td>4.8</td>
<td>38.3</td>
<td>38.4</td>
<td>17.7</td>
<td>-0.46</td>
<td>0.04</td>
<td>-0.086</td>
<td>-8.80</td>
</tr>
<tr>
<td>Braunvieh</td>
<td>2.4</td>
<td>-24.0</td>
<td>-43.3</td>
<td>4.7</td>
<td>-0.58</td>
<td>1.11</td>
<td>-0.107</td>
<td>-48.9</td>
</tr>
<tr>
<td>Charolais</td>
<td>6.9</td>
<td>32.5</td>
<td>23.2</td>
<td>5.5</td>
<td>-0.26</td>
<td>1.21</td>
<td>-0.204</td>
<td>8.10</td>
</tr>
<tr>
<td>Chianus</td>
<td>2.8</td>
<td>-19.3</td>
<td>-29.9</td>
<td>0.9</td>
<td>-0.16</td>
<td>0.57</td>
<td>-0.095</td>
<td>-18.5</td>
</tr>
<tr>
<td>Gelbvieh</td>
<td>2.8</td>
<td>-22.3</td>
<td>-32.1</td>
<td>6.5</td>
<td>-0.25</td>
<td>0.85</td>
<td>-0.103</td>
<td>-20.2</td>
</tr>
<tr>
<td>Limousin</td>
<td>1.7</td>
<td>-21.5</td>
<td>-46.9</td>
<td>-7.4</td>
<td>-0.22</td>
<td>1.13</td>
<td>-0.101</td>
<td>-21.6</td>
</tr>
<tr>
<td>Maine-Anjou</td>
<td>2.4</td>
<td>-33.3</td>
<td>52.4</td>
<td>-7.0</td>
<td>-0.44</td>
<td>0.93</td>
<td>-0.184</td>
<td>-33.0</td>
</tr>
<tr>
<td>Salers</td>
<td>0.9</td>
<td>-16.5</td>
<td>-46.3</td>
<td>8.1</td>
<td>0.06</td>
<td>1.03</td>
<td>-0.179</td>
<td>-46.7</td>
</tr>
<tr>
<td>Simmental</td>
<td>2.9</td>
<td>-8.90</td>
<td>-14.9</td>
<td>3.8</td>
<td>-0.21</td>
<td>0.51</td>
<td>-0.105</td>
<td>2.90</td>
</tr>
<tr>
<td>Tarentaise</td>
<td>3.4</td>
<td>18.5</td>
<td>-11.6</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The AB-EPD factors have traditionally been derived and released during the annual Beef Improvement Federation (BIF) conference each year. However, starting this year, we are updating the factors late in the year to make the factors more accurate during spring bull buying season.

The factors are derived by estimating breed differences from the USMARC germplasm evaluation program and adjusting these differences for the EPDs of the sires that were sampled in the system. The traits for which factors are estimated are birth weight, weaning weight, yearling weight, maternal weaning weight (milk), marbling score, ribeye area, backfat depth, and carcass weight (Table 1). These factors adjust the EPDs to an Angus base (chosen arbitrarily).

As an example, suppose a Charolais bull has a weaning weight EPD of +25.0 pounds and a Hereford bull has a weaning weight EPD of +70.0 pounds. The across-breed adjustment factors for weaning weight (see Table 1) are 32.5 pounds for Charolais and -18.2 pounds for Hereford. The AB-EPD is 25.0 pounds + 32.5 pounds = 57.5 pounds for the Charolais bull and 70.0 – 18.2 = 51.8 pounds for the Hereford bull. The expected weaning weight difference of offspring when both are mated to cows of another breed (e.g., Angus) would be 57.5 pounds – 51.8 pounds = 5.7 pounds.

It is important to note that the table factors (Figure 1) do not represent a direct comparison among the different breeds because of base differences between the breeds. They should only be used to compare the EPDs (AB-EPDs) of animals in different breeds. To reduce confusion, breed of sire means (i.e., one half of full breed effect; breed of sire means predict differences when bulls from two different breeds are mated to cows of a third, unrelated breed) for animals born in 2015 under conditions similar to USMARC are presented in Figure 2.

The adjustment factors in Figure 1 were updated using EPDs from the most recent national cattle evaluations conducted by each of the 18 breed associations, current as of December 2017. The breed differences used to calculate the factors are based on comparisons of progeny of sires from each of these breeds in the Germplasm Evaluation Program at USMARC in Clay Center, Neb.

| Figure 2. Breed of sire means for 2015 born animals under conditions similar to USMARC |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Angus | 86.1 | 567.2 | 1061.4 | 553.9 | 5.66 | 13.65 | 0.657 | 931.4 |
| Hereford | 89.6 | 548.5 | 1011.1 | 539.1 | 4.90 | 13.43 | 0.577 | 885.0 |
| Red Angus | 85.7 | 546.3 | 1025.5 | 557.3 | 5.40 | 13.36 | 0.623 | 899.8 |
| Shorthorn | 91.0 | 528.6 | 1000.5 | 551.6 | 5.04 | 13.77 | 0.500 | 886.1 |
| South Devon | 89.2 | 529.7 | 1001.2 | 570.1 | 5.04 | 14.05 | 0.437 | 858.2 |
| Beefmaster | 89.7 | 562.1 | 1014.1 | 549.8 | | | | |
| Brahman | 97.2 | 583.7 | 1016.1 | 555.7 | 4.48 | 13.27 | 0.477 | 864.5 |
| Brangus | 89.0 | 556.9 | 1027.0 | 552.1 | | | | |
| Santa Gertrudis | 89.7 | 559.7 | 1018.0 | 549.4 | 4.64 | 13.24 | 0.562 | 891.7 |
| Braunvieh | 89.7 | 557.3 | 990.10 | 570.3 | 5.13 | 14.62 | 0.451 | 870.1 |
| Charolais | 92.0 | 576.5 | 1045.8 | 545.3 | 4.90 | 14.7 | 0.448 | 921.3 |
| Chianus | 89.8 | 539.9 | 1004.2 | 547.2 | 5.02 | 14.09 | 0.501 | 887.7 |
| Gellovieh | 88.0 | 559.9 | 1036.3 | 562.9 | 4.93 | 14.45 | 0.496 | 902.9 |
| Limousin | 88.5 | 556.8 | 1011.3 | 549.8 | 4.65 | 14.77 | 0.476 | 897.7 |
| Maine-Anjou | 88.8 | 528.7 | 978.90 | 542.4 | 4.68 | 14.4 | 0.414 | 870.0 |
| Salers | 87.2 | 544.5 | 1010.5 | 558.8 | 5.33 | 14.23 | 0.468 | 872.6 |
| Simmental | 89.6 | 570.4 | 1049.5 | 557.7 | 5.04 | 14.47 | 0.482 | 920.5 |
| Tarentaise | 88.7 | 550.3 | 988.70 | 552.0 | | | | |
Improvements to the AB-EPD system

In 2016, BIF formed a working group of scientists, Extension specialists and breed association representatives to evaluate the AB-EPD system. Their main objectives were to discuss the AB-EPD system in relation to the multibreed NCE performed by International Genetic Solutions (IGS) and to set targets for future releases and implementation of the AB-EPD factors.

Multibreed evaluation has long been a goal of the animal breeding community in the United States. The aim of such an analysis is to produce sets of EPDs that are directly comparable across breeds participating in the system without the need for AB-EPD adjustment factors. An additional important benefit is producing EPDs for a large network of seedstock breeders (from multiple breeds) in a single evaluation.

However, even when using multibreed evaluation models, producing EPDs that are comparable across breeds is only possible if sires from the breeds are either directly compared to one another (e.g., progeny in the same contemporary group) or indirectly compared (e.g., sires are compared through a common reference sire).

The current multibreed evaluation, facilitated by IGS, involves several of the breeds in the ABEPD system. While most sires in the system are not directly compared to one another through progeny in the same contemporary group, they are tied together through common use of Angus bulls in several of the breeds.

As of this writing, we still show differences in AB-EPD factors of the breeds that participate in the IGS multibreed, indicating that they may not be on the same base. The BIF working group recommended continuing to produce separate, breed-based, AB-EPD factors rather than one factor for all breeds in the system.

Future release of AB-EPD factors

The BIF working group recommended a plan to begin releasing the AB-EPD factors near the end of each year to facilitate the use of these tools during spring bull buying. Additional updates may be released throughout the year, particularly if breeds are aware of significant changes to their evaluations, such as base adjustments.

From summer of 2017 through early 2018, we are aware of several changes to NCE that have or will be taking place. For instance, the American Angus Association has begun using a single-step procedure to incorporate genomic information into their NCE as of July 2017 and the American Hereford Association began incorporating genomic information using a different single-step BOLT model.

In addition, both of these breeds made other changes to the variance components used in their respective NCE. Based on these changes, we began examining methods to reduce the impact of genetic trend on the breed estimates from the ABEPD system. These new factors are based on breed differences from USMARC data recorded since 1999 (hence progeny from a more ‘current’ set of industry bulls).

In addition, the NCE produced by IGS will also change how genomic information is incorporated in the near future with the use of BOLT software. Because of these changes, we delayed the release of these factors until this point in the year. We expect to have another release in 2018 once the new EPDs from IGS using BOLT have been released.

Future changes to the ABEPD system involve the production of a dedicated web-based system where breeds and USMARC can independently update EPDs/data to make changes in these factors in real time. Ideally this web-based system could be part of a larger decision support system to aid commercial producers in their bull buying decisions.

Kuehn and Thallman are geneticists at USMARC. Contact them at Larry.Kuehn@ars.usda.gov; or 402-762-4352 and Mark.Thallman@ars.usda.gov; or 402-762-4261
Ah – ha
Caught you looking!
See there – you DO read ads.
Your AD could be here for
$6/issue x 5 = $30/year

HATESAUL FARM
Chris Hatesaul
Cattle for Sale
Freezer Beef
Hay for Sale
Farm: 570-537-2012
1636 Jackson Ctr Rd
Millerton, PA 16936

Hillcrest Farm
The Bertrand Family ~ Auburn, MA
Breeding Purebred & Percentage Simmentals
Visitors always welcome..
508.832.8313
Hillcrest1011@gmail.com

NYSA will
JUST GO ALL TO PIECES!!
USDA to Change U.S. Beef Grade Standards
Greg Henderson
U.S. beef grading standards will be updated to allow companies to use age documentation to verify cattle that are under 30 months of age.

The U.S. Department of Agriculture's Agricultural Marketing Service (AMS) said in a statement the voluntary U.S. Standards for Grades of Carcass Beef will include additional options - detention or age documentation - to establish the maturity of animals and ensure that cattle 30 months old, or less, are included in the youngest maturity group (A maturity). Skeletal and muscular evidence will still be used to determine maturity for those animals over 30 months of age.

2018 Marks ASA's 50th Anniversary
Travers Smith, one of the original founders of Simmental Breeders Ltd. of Calgary, Alberta, was the first "ambassador" to the US for the Simmental breed. Smith led efforts to import Simmental genetics into North America. Past and present members are encouraged to share their memories and photos by using the hashtags #mysimmentalstory #fiftyyearsofsimmental. Send your photos and memories by email to editor@simmgene.com or mail copies to the American Simmental Association at 1 Genetics Way, Bozeman, MT 59718.

DNA Results – Realistic Expectations
by American Simmental Association

Once you have collected a DNA sample either utilizing an ASA provided kit or a lab provided sample card, you are responsible for mailing the sample along with official ASA 2D barcode/paperwork to the GeneSeek lab.

Once GeneSeek receives the sample it is expected to enter processing within 3-5 business days as long as proper paperwork has been filed with ASA. Hair samples will see a longer turnaround time since they are only processed one time per week. Allflex TSUs and blood are the preferred sampling methods.

-If samples arrive without official ASA paperwork/2D barcode stickers, they will NOT be placed in to test until the appropriate requests have been filed. This can add anywhere from 7-14 days to the turnaround time, depending on communication between ASA and the submitting member. Please do not mail samples without proper ASA documentation.

It will take approximately 4 weeks for results to be reported to ASA. This time can vary depending on the time of year or type of testing requested. Keep in mind, December through March are the highest volume months and samples may be in test longer than other months.

There is NO WAY TO EXPEDITE DNA testing at GeneSeek.

Once results are reported to ASA from Geneseek, members will receive reports of testing either via email (if email address is listed on the account) or by mail. At this time testing fees will be invoiced to the ASA member’s account.

If the animal is registered/on-file in the database, all results are viewable if the owner is logged into Herdbook Services by searching the animal record and clicking on DNA details. for more information on how to view DNA reports.

If you have additional questions please email dna@simmgene.com or call our office at 406.587.4531 and choose 4 to be connected to the DNA department.
What to Expect with ASA’s New Genetic Evaluation System BOLT
By ASA’s Genetic Evaluation Team
Change can be a scary concept to some yet sought after by others. Many ASA members and International Genetic Solution (IGS) partners wonder about the changes on the horizon once BOLT is fully implemented. That change may be nerve racking but in reality, things should change. Why invest in new and improved methods if you get the same answers? Here are key changes to expect with the new genetic evaluation:

1. Movement of EPDs and reranking. EPDs will change especially in younger, lower accuracy cattle. Members should expect movement in lower accuracy cattle, as seen in the existing evaluations, because they may have new progeny data reported. Some cattle will move in a favorable direction while others will do the opposite. Keep in mind even if the EPDs get worse, the prediction of them is more accurate. With enough calves and phenotypes, the current evaluation would eventually arrive at a similar EPD as BOLT, it just would take longer or more information in the current system. With BOLT and the new genetic evaluation methodologies, we will have more accurate EPDs earlier in an animal's life.

2. More accurate accuracy. This idea takes a little time to sink in. The accuracy reported for each EPD will be a directly calculated and thus closer to the "real" accuracy. The methods to solve accuracy directly are extremely difficult and take a lot of computer power. In the current evaluation, it is not possible to solve for accuracy directly so an approximation method is used to estimate accuracy for each EPD. There are inherent flaws with approximating the accuracy which until BOLT were just part of the evaluation. Now with BOLT, the accuracy reported with the EPD will be more reliable.

3. Reported accuracies will tend to be lower. Again, this is a little confusing at first and sounds like the opposite of what was just explained. The EPDs will be more accurate. The accuracy reported will be more accurate. Both statements are still true. However, one of the inherent flaws in the approximation methods used to find accuracy in the current evaluation, and in all evaluations not produced through BOLT, is they tend to bias the accuracies upward, especially for younger animals. This was known for a long time, but there was no way to calculate the accuracies directly. With BOLT, having accuracy directly solved results in a more reliable accuracy but that accuracy will often be numerically lower than the current evaluation would predict. However, the new reported accuracies with BOLT should better represent the possible changes for the EPDs.

4. DNA testing will have a larger impact. With the switch to BOLT, IGS will use Single Step genomic evaluation on all EPDs (currently using Single Step for Stayability EPDs). Single Step uses the DNA markers, pedigree information, and phenotypic data simultaneously in the prediction of the EPDs. Previously molecular breeding values (MBVs) were calculated from the genomic information and those MBVs were blended separately into the EPD prediction. The Single Step method squeezes more information from the DNA markers than the previous approach allowed. Also, there are biases inherent in the blending process that aren't a problem with the Single Step approach. Additionally, with Single Step, the genomic information will not only enhanced EPDs for the genotyped animal but also will be used in the EPD estimates of relatives.

5. More frequent genetic evaluation runs. With the horse power behind BOLT, IGS can run genetic evaluations much more frequently than the current system allows. This has many benefits. It allows members to get more immediate feedback after submitting their records. If members miss a deadline, the next deadline for data won't be far away. It allows for more accurate EPDs throughout the year and faster incorporation of the genomics. The down side is the EPDs put in print will quickly be outdated. Genetic evaluation is not stagnant. There will always be improvements as new research in animal breeding, genomics, and statistics advance. BOLT is revolutionary in the innate flexibility, the computational power, and the statistical methods made possible using this software. Embrace the change to a new and improved genetic evaluation, it's coming!
Show cattle & breeding stock for sale at all times. Bull calves & show steers available through the summer.

We strive for Satisfied Customers. Our cattle work for us and their new owners, performing on grass in the summer and hay in the winter.

Watch for our consignments to the Gettysburg Stars & Stripes Sale on the 1st Sat in May.

Jeanne White, Owner
Phil Paradis, Herdsman
Groton, NY
607-423-4888 cell
Jeanne@SimmeValley.com
www.SimmeValley.com
NEXT MEETING
The next NYSA meeting will be on 3-24-18 at Groton City Community Church near Simme Valley, Groton, NY. **The semen, AI supplies, eartags, needles & syringes will be ready for pick-up.**

DIRECTIONS: N. or S. on I-81, take exit 12 to Rt 281, turn right on Rt 281, about ¾ mile turn left on Rt 90. Go about 5.5 miles to a VERY small town of Summerhill. Turn left at first cross-road after Summerhill sign (Salt Rd – it’s at the top of the hill), then take 2nd left, go down the hill & across creek. Simme Valley is 1st place on the left. Continue to church, go straight to “T”, turn right, take next left, church is on the right.

OR – Rt 38 to Groton, East on Rt 222 to TOP of hill, turn left on Salt Rd, take 3rd right. Simme Valley is 1st place on the left.

Meeting will start at 1:00 PM
Everyone is invited to visit & view Simme Valley's new calves after the meeting. Bring appropriate BOOTS & dress for the weather (we're usually colder).

IT PAYS TO ADVERTISE

Advertisements in our Directory & Newsletter Are very reasonable:

DIRECTORY:
- Full Color $125
- Full B&W $85
- ½ Page $50
- ¼ Page $30

NEWSLETTER:
- Full Page $40
- ½ Page $20
- ¼ Page $12
- Business Card $6

Let me know if you want to Place a new ad or renew Jeanne@SimmeValley.com 607-423-4888

What bulls are you going to use?

ORDER YOUR SEMEN SIRE BOOKS
NOW!! And group order with NYSA

ABS 800-ABS-STUD
Bovine Elite 800-786-4066
Cattle Vision 866-356-4565
Genex/CRI 888-333-1783
Gen Hor – SEK 800-443-6389
ORIgen 866-867-4436
Select Sires 570-836-3168

1-1-18 COMING SOON
Do you have your semen picked out?
Paid your membership?
NEW YORK
Simmental
ASSOCIATION
APPLICATION/RENEWAL FOR MEMBERSHIP
Farm Name __
Name of Owner _____________________________________
Address__

Telephone ___
E-MAIL___
Type of farm operation

Directions to farm___________________________________

$25/Yr Farm or Individual
$30 Late Renewal
Juniors: $5 / 1st year - $5 / Renewal
GET INVOLVED!
YOU CAN HELP SHAPE THE FUTURE
NEW YORK SIMMENTAL ASSOCIATION
Shane Meyers, President 585-314-2146
Jeanne White, Secr/Treasurer - 607-423-4888
6493 Stauber Rd, Groton, N.Y. 13073-9430

2018 Dues
Notice
Membership/renewal $25 by 1/10
Late Membership renewal $30
Jr. Membership renewal $5
New Jr. Membership $5
Sign up a buyer $25 (provide info)
Newsletter Ads:
Business Card $6 (x 5=$30)
1/4 Page Ad $12 (x 5=$60)
½ Page Ad $20 (x 5=$100)
Full Pg Ad $40 (x 5 =$200)
Directory Ads:
1/4 Page Ad: $30
½ Page Ad: $50
Full Page Ad $85
Full Page Color $125
TOTAL DUE: _______

$5 LATE FEE AFTER 1-10-18
Simmental Maternal Value

- High Fertility
- Exceptional Maternal Calving Ease
- Increased Maternal Weaning Weights
- Lower Mature Weight Than Hereford or Angus

For great maternal traits, contact a Simmental Breeder
Www.NewYorkSimmental.com

SimBreeders have Solutions!